scramjet (supersonic combustion ramjet) is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion (hence ramjet), but whereas a ramjet decelerates the air to subsonic velocities before combustion, the airflow in a scramjet is supersonic throughout the entire engine. That allows the scramjet to operate efficiently at extremely high speeds.

During World War II, a tremendous amount of time and effort were put into researching high-speed rocket-powered aircraft, predominantly by the Germans.[citation needed] After the war, the US and UK took in several German scientists and acquired various military technologies through Operation Paperclip, including technology surrounding rocket engines. The Bell X-1 attained supersonic flight in 1947 and, by the early 1960s, rapid progress towards faster aircraft suggested that operational aircraft would be flying at “hypersonic” speeds within a few years. Except for specialized rocket research vehicles like the North American X-15 and other rocket-powered spacecraft, aircraft top speeds have remained level, generally in the range of Mach 1 to Mach 3.

In the 1950s and 1960s a variety of experimental scramjet engines were built and ground tested in the US and the UK. In 1958, an analytical paper discussed the merits and disadvantages of supersonic combustion ramjets.[2] In 1964, Drs. Frederick S. Billig and Gordon L. Dugger submitted a patent application for a supersonic combustion ramjet based on Billig’s Ph.D. thesis. This patent was issued in 1981 following the removal of an order of secrecy.[3]

In 1981 tests were made in Australia under the guidance of Professor Ray Stalker in the T3 ground test facility at ANU.[4]

The first successful flight test of a scramjet was performed by the Soviet Union in 1991. It was an axisymmetric hydrogen-fueled dual-mode scramjet developed by Central Institute of Aviation Motors (CIAM), Moscow in the late 1970s. The scramjet flight was flown captive-carry atop the SA-5 surface-to-air missile that included an experimental flight support unit known as the “Hypersonic Flying Laboratory” (HFL), “Kholod”.[5]

Then from 1992 to 1998 an additional 6 flight tests of the axisymmetric high-speed scramjet-demonstrator were conducted by CIAM together with France and then with NASA.[6][7] Maximum flight velocity greater than Mach 6.4 was achieved and scramjet operation during 77 seconds was demonstrated. These flight test series also provided insight into autonomous hypersonic flight controls.

In the 2000s, significant progress was made in the development of hypersonic technology, particularly in the field of scramjet engines.

The HyShot project demonstrated scramjet combustion on July 30, 2002. The scramjet engine worked effectively and demonstrated supersonic combustion in action. However, the engine was not designed to provide thrust to propel a craft. It was designed more or less as a technology demonstrator.[8]

A joint British and Australian team from UK defense company Qinetiq and the University of Queensland were the first group to demonstrate a scramjet working in an atmospheric test.[9]

Hyper-X claimed the first flight of a thrust-producing scramjet-powered vehicle with full aerodynamic maneuvering surfaces in 2004 with the X-43A.[10][11] The last of the three X-43A scramjet tests achieved Mach 9.6 for a brief time.[12]

On June 15, 2007, the US Defense Advanced Research Project Agency (DARPA), in cooperation with the Australian Defence Science and Technology Organisation (DSTO), announced a successful scramjet flight at Mach 10 using rocket engines to boost the test vehicle to hypersonic speeds.[13]

A series of scramjet ground tests was completed at NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were used to support HIFiRE flight 2.[14]

On May 22, 2009, Woomera hosted the first successful test flight of a hypersonic aircraft in HIFiRE (Hypersonic International Flight Research Experimentation). The launch was one of ten planned test flights. The series of flights is part of a joint research program between the Defence Science and Technology Organisation and the US Air Force, designated as the HIFiRE.[15] HIFiRE is investigating hypersonics technology (the study of flight exceeding five times the speed of sound) and its application to advanced scramjet-powered space launch vehicles; the objective is to support the new Boeing X-51 scramjet demonstrator while also building a strong base of flight test data for quick-reaction space launch development and hypersonic “quick-strike” weapons.[15]

On 22 and 23 March 2010, Australian and American defense scientists successfully tested a (HIFiRE) hypersonic rocket. It reached an atmospheric velocity of “more than 5,000 kilometres per hour” (Mach 4) after taking off from the Woomera Test Range in outback South Australia.[16][17]

On May 27, 2010, NASA and the United States Air Force successfully flew the X-51A Waverider for approximately 200 seconds at Mach 5, setting a new world record for flight duration at hypersonic airspeed.[18] The Waverider flew autonomously before losing acceleration for an unknown reason and destroying itself as planned. The test was declared a success. The X-51A was carried aboard a B-52, accelerated to Mach 4.5 via a solid rocket booster, and then ignited the Pratt & Whitney Rocketdyne scramjet engine to reach Mach 5 at 70,000 feet.[19] However, a second flight on 13 June 2011 was ended prematurely when the engine lit briefly on ethylene but failed to transition to its primary JP-7 fuel, failing to reach full power.[20]

On 16 November 2010, Australian scientists from the University of New South Wales at the Australian Defence Force Academy successfully demonstrated that the high-speed flow in a naturally non-burning scramjet engine can be ignited using a pulsed laser source.[21]

A further X-51A Waverider test failed on August 15, 2012. The attempt to fly the scramjet for a prolonged period at Mach 6 was cut short when, only 15 seconds into the flight, the X-51A craft lost control and broke apart, falling into the Pacific Ocean north-west of Los Angeles. The cause of the failure was blamed on a faulty control fin.[22]

In May 2013 an uncrewed X-51A WaveRider reached 4828 km/h (Mach 3.9) during a three-minute flight under scramjet power. The WaveRider was dropped at 50,000 feet from a B-52 bomber, and then accelerated to Mach 4.8 by a solid rocket booster which then separated before the WaveRider’s scramjet engine came into effect.[23]

On 28 August 2016, the Indian space agency ISRO conducted a successful test of a scramjet engine on a two-stage, solid-fuelled rocket. Twin scramjet engines were mounted on the back of the second stage of a two-stage, solid-fueled sounding rocket called Advanced Technology Vehicle (ATV), which is ISRO’s advanced sounding rocket. The twin scramjet engines were ignited during the second stage of the rocket when the ATV achieved a speed of 7350 km/h (Mach 6) at an altitude of 20 km. The scramjet engines were fired for a duration of about 5 seconds.[24][25]

On June 12, 2019, India successfully conducted the maiden flight test of its indigenously developed uncrewed scramjet demonstration aircraft for hypersonic speed flight from a base from Abdul Kalam Island in the Bay of Bengal at about 11.25 am. The aircraft is called the Hypersonic Technology Demonstrator Vehicle. The trial was carried out by the Defence Research and Development Organisation. The aircraft forms an important component of the country’s programme for development of a Hypersonic Cruise missile system.[26][27]


Please enter your comment!
Please enter your name here