Most companies have a substantial number of computers. For example, a company may have a computer for each worker and use them to design products, write brochures, and do the payroll. Initially, some of these computers may have worked in isolation from the others, but at some point, management may have decided to connect them to be able to distribute information throughout the company. Put in slightly more general form, the issue here is resource sharing. the goal is to make all programs, equipment, and especially data available to anyone on the network without regard to the physical location of the resource or the user. An obvious and widespread example is having a group of office workers shares a common printer. None of the individuals needs a private printer, and a high-volume networked printer is often cheaper, faster, and easier to maintain than a large collection of individual printers. However, probably even more important than sharing physical resources such as printers, and tape backup systems are sharing information. Companies small and large are vitally dependent on computerized information. Most companies have customer records, product information, inventories, financial statements, tax information, and much more online. If all of its computers suddenly went down, a bank could not last more than five minutes. A modern manufacturing plant, with a computer-controlled assembly line, would not last even 5 seconds. Even a small travel agency or three-person law firm is now highly dependent on computer networks for allowing employees to access relevant information and documents instantly. For smaller companies, all the computers are likely to be in a single office or
perhaps a single building, but for larger ones, the computers and employees may be scattered over dozens of offices and plants in many countries. Nevertheless, a salesperson in New York might sometimes need access to a product inventory database in Singapore. Networks called VPNs (Virtual Private Networks) may be used to join the individual networks at different sites into one extended network. In other words, the mere fact that a user happens to be 15,000 km away from his data should not prevent him from using the data as though they were local. This goal may be summarized by saying that it is an attempt to end the ‘tyranny of geography.’’ In the simplest of terms, one can imagine a company’s information system as consisting of one or more databases with company information and some number of employees who need to access them remotely. In this model, the data are stored on powerful computers called servers. Often these are centrally housed and maintained by a system administrator. In contrast, the employees have simpler machines, called clients, on their desks, with which they access remote data, for example, to include in spreadsheets they are constructing. (Sometimes we will refer to the human user of the client machine as the ‘‘client,’’ but it should be clear from the context whether we mean the computer or its user.) The client and server machines are connected by a network. Note that we have shown the network as a simple oval, without any detail. We will use this form when we mean a network in the most abstract sense. When more detail is required, it will be provided. this whole arrangement is called the client-server model. It is widely used and forms the basis of much network usage. The most popular realization is that of a Web application, in which the server generates Web pages based on its database in response to client requests that may update the database. The client-server model is applicable when the client and server are both in the same building (and belong to the same company), but also when they are far apart. For example, when a person at home accesses a page on the World Wide Web, the same model is employed, with the remote Web server being the server and the user’s personal computer is the client. Under most conditions, one server can handle a large number (hundreds or thousands) of clients simultaneously. If we look at the client-server model in detail, we see that two processes (i.e., running programs) are involved, one of the client machines and one on the server machine. Communication takes the form of the client process sending a message over the network to the server process. The client process then waits for a reply message. When the server process gets the request, it performs the requested work or looks up the requested data and sends back a reply.
A second goal of setting up a computer network has to do with people rather than information or even computers. A computer network can provide a powerful communication medium among employees. Virtually every company that has two or more computers now has email (electronic mail), which employees generally use for a great deal of daily communication. In fact, a common gripe around the water cooler is how much email everyone has to deal with, much of it quite meaningless because bosses have discovered that they can send the same (often content-free) message to all their subordinates at the push of a button. Telephone calls between employees may be carried by the computer network instead of by the phone company. This technology is called IP telephony or Voice over IP (VoIP) when Internet technology is used. The microphone and speaker at each end may belong to a VoIP-enabled phone or the employee’s computer. Companies find this a wonderful way to save on their telephone bills. Other, richer forms of communication are made possible by computer networks. Video can be added to audio so that employees at distant locations can see and hear each other as they hold a meeting. This technique is a powerful tool for eliminating the cost and time previously devoted to travel. Desktop sharing lets remote workers see and interact with a graphical computer screen. This makes it easy for two or more people who work far apart to read and write a shared blackboard or write a report together. When one worker makes a change to an online document, the others can see the change immediately, instead of waiting several days for a letter. Such a speedup makes cooperation among far-flung groups of people easy where it previously had been impossible. More ambitious forms of remote coordination such as telemedicine are only now starting to be used (e.g., remote patient monitoring) but may become much more important. It is sometimes said that communication and transportation are having a race, and whichever wins will make the other obsolete. The third goal for many companies is doing business electronically, especially with customers and suppliers. This new model is called e-commerce (electronic commerce) and it has grown rapidly in recent years. Airlines, bookstores, and other retailers have discovered that many customers like the convenience of shopping from home. Consequently, many companies provide catalogs of their goods and services online and take orders online. Manufacturers of automobiles, aircraft, and computers, among others, buy subsystems from a variety of suppliers and then assemble the parts. Using computer networks, manufacturers can place orders electronically as needed. This reduces the need for large inventories and enhances efficiency.


Please enter your comment!
Please enter your name here